PCBs in Schools and Corporate Responsibility for Remediation:
Yorktown Central School District v. Monsanto Company

Valerie M. Watnick*

INTRODUCTION AND HISTORY ... 233

I. THE CHARACTERISTICS AND DANGERS OF PCBS 237
 A. Characteristics of PCBs .. 237
 B. Toxic Effects of PCBs on Children 239
 C. The National Extent of the Problem 241

II. EMERGENCE OF PCBS IN SCHOOLS AS A NATIONAL ISSUE 242
 A. Pending Litigation .. 242
 B. A Brief Overview of Asbestos, Tobacco, and Lead Regulation ... 245
 C. The Current PCB Issue Develops: PCBs in a Manhattan School ... 248

III. EXISTING REGULATION OF PCBS IN SCHOOLS 251
 A. Toxic Substances Control Act 251
 B. EPA Role in Cleanup .. 253
 C. New Legislative and Regulatory Developments 254
 D. New York State Education Department Protocol For Renovation Involving PCB-Containing Materials 256
 E. Other Nationwide Developments 259
 F. The Stockholm Convention and PCBs 260

IV. PROPOSED RESPONSES: ECONOMIC, LEGAL, AND POLICY REASONS TO HOLD MONSANTO LIABLE IN THE YORKTOWN LITIGATION 261
 A. Overview and Mandates of a New Federal Remediation Program ... 261
 B. Existing Regulatory Frameworks 261
 C. Components of New Federal Legislation 264

*Associate Professor of Law, City University of New York, Baruch College, Zicklin School of Business. J.D., Cornell Law School, 1988, B.S., Bucknell University, 1985.
1. Initial Testing of School Building Materials and Subsequent Testing of Indoor Air in Schools Where PCB Contamination is Found .. 264
2. Develop Safe Demolition, Renovation, and Removal Requirements .. 265
3. Congress Must Make Air Testing in Contaminated Schools Mandatory and Establish Minimum Air Quality Standards .. 266
4. Current Remediation Steps .. 267
D. Going after the Alleged Profiteer: Holding Monsanto Company Liable for PCB Remediation in Schools 267
1. Allocating the Cost of Manufacturing and Selling PCBs 268
2. Fairness Dictates that Monsanto Pay for Remediation 268
3. Schools Can and Do Seek Recovery in Court for Remediation Costs due to Contamination of their Property From Toxic Substances .. 269
E. Compliance under the Stockholm Convention 272
CONCLUSION .. 272
Environmental health experts have recently recognized caulking and sealing materials commonly used in the construction of schools in the 1960’s and 1970’s as a potential toxic source of the man-made chemicals called polychlorinated biphenyls, commonly known as “PCBs.”\(^1\) In 1977, in recognition of the adverse health effects of these man-made compounds, Congress banned most uses of PCBs in building construction.\(^2\) Despite the 1977 ban and evidence that PCBs are known animal carcinogens, probable human carcinogens,\(^3\) and have other toxic effects on the human reproductive, immune,
endocrine, and neurological systems, these compounds are still commonly found in school buildings throughout the United States.5

This Article asserts that just as regulators acted on lead and asbestos concerns decades ago, regulators must act now to curtail the dangers associated with PCBs in school building materials6 and develop a plan to remediate contaminated school buildings. This Article proposes a “Model Act” that provides for mandatory PCB testing in schools built between 1940 and 1977. The Model Act also provides for mandatory renovation and remediation protocols for PCB-contaminated building materials in schools.7

PCBs, unlike other toxins found in building materials like lead or asbestos, are not harmless when left undisturbed.8 Rather, PCBs can move from sealants to surrounding materials, to the air, and to the ground, even when no physical changes occur in the building materials.9 Studies have found contamination of indoor air in buildings containing PCB-contaminated caulking10 without any physical evidence of decay or alteration of the surrounding building materials.11

As this Article will evince, the continued presence of PCBs and the lack of

range of potency estimates for different PCB mixtures, based on the incidence of liver cancer and in consideration of the mobility of PCBs in the environment. EPA, Health Effects of PCBs, http://www.epa.gov/epawaste/hazard/tsd/pcbs/pubs/effects.htm (last visited Mar. 2, 2010). Additionally, other organizations have determined that PCBs are human carcinogens or probable human carcinogens. “The International Agency for Research on Cancer has declared PCBs to be probably carcinogenic to humans. The National Toxicology Program has stated that it is reasonable to conclude that PCBs are carcinogenic in humans. The National Institute for Occupational Safety and Health has determined that PCBs are a potential occupational carcinogen.”Id.

5 Buildings constructed prior to 1977 (the year in which Congress prohibited the use of PCBs in construction) commonly contained PCBs around windows in masonry buildings. Herrick, supra note 1, at 1051.

6 Letter from Miranda Massie, Senior Staff Attorney, New York Lawyers for the Public Interest, Inc., to Lisa Jackson, Administrator of the EPA, at 1 (Apr. 28, 2009), available at http://www.pcbinschools.org/Letter%20to%20EPA%20Jackson.pdf [hereinafter Massie Apr. 28 Letter to EPA] (stating that because the risks from PCBs are “far more severe for children,” “PCBs around windows and doors in schools has come to be recognized as a significant public health problem”).

7 See discussion infra Part IV.C.3-D.2.

8 See Herrick, supra note 1, at 1051.

any regulatory framework to monitor and remediate PCBs provides still another illustration of the choice presented in *Silent Spring,* Rachel Carson’s landmark book about the dangers of filling our world with synthetic chemicals. *Silent Spring* offered humanity a choice with serious legal, economic and ethical implications: to take the “other” less toxic road, the road necessary to preserve the earth and humanity, or to continue on the “superhighway” that would end in contamination of the Earth. Indeed, scholars and activists often credit Carson’s *Silent Spring* for helping to establish the modern environmental movement. However, in the years since Carson first published her book, society generally has not taken the “other” road. Instead, society has continued indiscriminately to allow the proliferation of synthetic chemicals including PCBs and pesticides. This Article contends that our society must now diverge from this course and take the road necessary to preserve the Earth and humanity. Society must begin the painstaking process of ridding our world of the toxic and synthetic chemicals known as PCBs.

In recent groundbreaking litigation involving PCBs, the Yorktown Central School District (“Yorktown School District”) in New York State sued the U.S. makers and distributors of PCBs in federal court, urging that defendants should...
bear the burden of required remediation in the School District.\footnote{18} Prior to the lawsuit, Yorktown School District discovered high levels of PCBs in school building materials and soil surrounding one of its schools.\footnote{19} The School District responded by undertaking remediation of PCB-laden caulk in all of its school buildings, a task it completed shortly before the lawsuit.\footnote{20}

On the heels of Yorktown School District's PCB clean-up efforts and its ensuing federal lawsuit, additional serious concerns about PCBs in schools surfaced in New York City in April 2008. These new concerns arose following reports by the \textit{New York Daily News}\footnote{21} that its testing revealed dangerously high levels of PCBs in the caulking of eight out of the nine New York City public schools tested.\footnote{22} These findings were disturbing on a local level, but even more disturbing because of their national implications. Given that New York City's public school system is the largest in the nation, serving over 1.1 million students and operating over 1500 schools,\footnote{23} these PCB findings serve as a "tip of the iceberg" warning to school districts, parents, and lawmakers nationwide.

This Article suggests that the presence of PCBs in our nation's schools is a problem that requires legislative attention. For legal, economic, and policy reasons, courts should hold the corporate manufacturers and distributors of PCBs in the United States liable for remediation and other costs associated with PCBs in schools. The argument is conceived in four Parts. Part I discusses the
known health risks associated with PCB exposure and the extent of the PCB problem on a national scale. Part II analyzes Yorktown School District’s recent lawsuit against Monsanto Company, alleging that the original Monsanto was the exclusive manufacturer of PCBs and that other defendants in the suit were distributors, suppliers, marketers, and sellers of products containing PCBs. This section also charts the New York City public school system’s efforts to encourage the federal and local government to properly clean up the city’s public schools, an extremely costly and onerous effort for local administrators and lawmakers to tackle without private funding. Part III gives an overview of existing laws and regulations concerning PCBs and proposals for new regulation. Part IV outlines a framework for model federal legislation to address comprehensively the existence of PCBs in our nation’s schools.

I. THE CHARACTERISTICS AND DANGERS OF PCBs

A. Characteristics of PCBs

PCBs were first synthesized in 1889 and were mass produced starting in the 1920s. They are chlorinated compounds that “belong to a broad family of artificially-made organic chemicals known as chlorinated hydrocarbons.” PCBs are mixtures of up to 209 individual chlorinated compounds that are also known as congeners. The Yorktown School District Complaint alleges that the original Monsanto (“Old Monsanto”) manufactured these congeners in the United States from about 1935 to 1971.

24 Yorktown School District Complaint, supra note 17, at 1-2; Conn. Dep’t of Envtl. Prot., PCBs, http://www.ct.gov/dep/pcb (last visited Feb. 28, 2010) (noting that “Monsanto” was the “sole U.S. manufacturer” of PCBs).

25 See Yorktown School District Complaint, supra note 17, at 1-2. See discussion infra Part II.A. The Yorktown litigation is the first major case to involve a public school district’s lawsuit against Monsanto Company. However, Monsanto Company and Solutia, Inc. previously have been embroiled in PCB litigation initiated by Burlington Community College. Maertin v. Armstrong World Indus. Inc., No. CIV. A. 95-2849, 2000 WL 554168 (D.N.J. May 3, 2000).

27 See EPA on PCBs, supra note 1.

28 Id.

29 See Yorktown School District Complaint, supra note 17, at 3, 7 and accompanying text (the Complaint refers to the original Monsanto Company incorporated in 1901 as “Old Monsanto”).

In the early twentieth century, chemists experimented by mixing chlorine with benzene, a byproduct of the new gasoline age. The chemists realized that heating and pressurizing the chlorine and benzene under the right set of conditions could make a heavy syrupy liquid that was stable and conducted heat. Thus, scientists created the first PCB congeners for commercial use. Manufacturers gave PCB congeners the trade name “Aroclor” and designated each with a number indicating the extent of chlorination of the congener (e.g., Aroclor 1254).

Once created, PCBs do not easily break down in the environment. In fact, builders and developers used PCBs in school construction in joints, caulk, and sealants because of their extreme stability and resistance to thermal and oxidative breakdown. PCBs remain in the environment despite exposure to sun and air. Indeed, they can travel long distances in the Earth’s water, air, and soil, and are later found far from the areas in which they originated precisely because they do not biodegrade easily.

In the 1970s, despite their widespread use, many researchers concluded that the substances found in PCBs were highly toxic. Humans are exposed to PCBs through the air, food, and water. Researchers realized that because PCBs do not biodegrade, humans that suffered exposure to the chemicals would carry the toxic load in their bloodstream indefinitely. This process by which organisms accumulate a substance is called bioaccumulation. PCBs thus accumulate in the cells of plants and smaller animals, which are subsequently eaten by larger animals, and then by humans as food. Therefore, exposure to
PCBs from food is a significant source of exposure. In addition to studying PCB exposure through food, experts also recently began to recognize the effects of dermal and inhalation exposure. Experts have concluded that these pathways of exposure are equally significant, especially as exposure through food decreases due to increased management of toxic waste containing PCBs. Children and adults can thus also be exposed to PCBs by breathing them in air or by touching contaminated material such as caulking in school buildings.

B. Toxic Effects of PCBs on Children

Although scientists have not exhaustively studied the specific effects of PCB exposure on children, researchers have specifically associated PCBs with neurotoxic and immunologic effects in children. Researchers link exposure to PCBs in utero with lower birth weight and decreased head circumference at birth. Additionally, scientists have also linked PCB exposure to a higher incidence of behavioral disorders and lower IQ scores in children. Lastly, PCB exposure may also cause damage to the immune system, liver, skin, reproductive system, gastrointestinal tract, and thyroid gland.

PCBs are particularly dangerous for children, who may be more susceptible to toxins than adults due to their smaller size and developing bodies. The magnified as one moves up the food chain). PCBs have been found to be chemically very similar to DDT. See Francis, supra note 30, at 5.

42 See EPA on PCBs, supra note 1.

44 Id.

45 Herrick, supra note 1, at 1051.

48 Alexander et al., supra note 3, at 89 (noting that PCBs disrupt the human endocrine system).

49 Id. at 91; WORLD HEALTH ORGANIZATION, WHO REGIONAL OFFICE FOR EUROPE, COPENHAGEN, DENMARK, POLYCHLORINATED BIPHENYLS, ch. 5.10 at 10 (2000); AGENCY FOR TOXIC SUBSTANCES AND DISEASE REGISTRY, HEALTH EFFECTS OF PCBs 146, available at http://www.atsdr.cdc.gov/toxprofiles/tpl7-c3.pdf (last visited Mar. 29, 2010) [hereinafter ATSDR, HEALTH EFFECTS].

50 ATSDR, HEALTH EFFECTS, supra note 49 at 89.

51 Id. at 229.

52 Alexander et al., supra note 3, at 89.

53 See Alexander et al., supra note 3, at 3; PCBs Overview, supra note 34.

Agency for Toxic Substances and Disease Registry ("ATSDR") concluded that:

Younger children may be particularly vulnerable to PCBs because, compared to adults, they are growing more rapidly and generally have lower and distinct profiles of biotransformation enzymes, as well as much smaller fat depots for sequestering the... PCBs.55

Further, the National Research Council of the National Academy of Sciences determined in 1993 that children are generally more susceptible to the effects of toxins than adults because of the physiologic and biochemical differences between children and adults that influence the quantity absorbed and the effect of toxins on children.56 The NRC concluded that children have higher metabolic rates and consume more food, air, and water per pound of body weight than adults.57 All of these factors influence their susceptibility to toxins.

Finally, in adults, PCBs are suspected human carcinogens, known animal carcinogens58 and neurotoxins, and are commonly considered to be chemicals that disrupt the human endocrine system (Endocrine Disrupting Chemicals or "EDCs").59 EDCs60 are synthetic compounds61 that affect the functioning of the endocrine system in two ways.62 EDCs can either block or alter the effect of naturally produced hormones in the endocrine system.63 EDCs also cause a various studies of effects of PCBs on fetuses and children).

55 Id. at 381.
56 NATIONAL RESEARCH COUNCIL, PESTICIDES IN THE DIETS OF INFANTS AND CHILDREN 23-43 (1993) (noting that lipid soluble substances, including PCBs, may be more concentrated in children where the overall proportion of body fat to the rest of the body mass is lower than it is in adulthood).
57 Id. at 38, 43. See also Valerie Watnick, Risk Assessment: Obfuscation of Policy Decisions in Pesticide Regulation and the EPA’s Dismantling of the Food Quality Protection Act’s Safeguards for Children, 31 ARIZ. ST. L.J. 1315, 1321-22 (1999) [hereinafter Watnick, Risk Assessment].
58 Alexander et al., supra note 3, at 78. See discussion supra Part I.A-B.
59 Alexander et al., supra note 3, at 86; Herrick, supra note 1, at 1051. For a more thorough discussion of the effects of endocrine disrupting chemicals, see Watnick, Our Toxics Regulatory System, supra note 16.
60 Robin Fastenau, EPA’s Investigation and Regulation of Endocrine Disrupters, 14 J. ENVTL. L. & LITIG. 53, 54 (1999).
62 The endocrine system regulates the body’s biological processes from conception to old age, including the development of the brain, nervous system, and reproductive system. EPA, What are Endocrine Disrupters?, http://www.epa.gov/endo/pubs/edspoerview/whatare.htm (last visited Mar. 2, 2010).
63 Commonly known endocrine disrupting chemicals ("EDCs") include pesticides, PCBs, and dioxins (a byproduct of paper production). See Fastenau, supra note 60, at 54. The endocrine system consists of glands, organs, and tissues that release hormones into the human circulatory system. The hormones carry messages that direct development and function in the animal’s cells and organs. Hormones therefore control both prenatal and postnatal sexual
decrease in fertility rates in wildlife. Strong evidence suggests that EDCs have similarly contributed to decreases in human fertility around the world. Because PCBs mimic estrogen, a vital human hormone, and are chemically similar to DDT, a known EDC and a banned pesticide, they are likely potent EDCs that have toxic effects on developing organisms and children.

C. The National Extent of the Problem

Buildings constructed during the 1950s and 1960s are very likely to contain PCBs in their materials. In a 2004 study, researchers at the Harvard School of Public Health found that thirteen out of twenty-four buildings sampled in the Boston area contained caulking materials with detectable levels of PCBs. Because so many buildings were constructed during this period to accommodate the “baby boom,” many school buildings are likely to contain PCB-contaminated materials. In New York City alone, 260 schools were constructed during the period when PCBs were routinely used in window caulking. Addressing the nationwide impact of PCBs, the New York Daily News asserted that any school building constructed in the United States between the 1960s and 1977 likely contains PCBs in its building materials in excess of development. See Mary O’Brien, Our Current Toxic Use Framework, Our Stolen Future, and Our Options, 11 J. ENVTL. L. & LITIG. 331, 332 (1996).

See Francis, supra note 30, at 5.

See discussion supra Part I.B.

See, e.g., PCBs – Mandatory Testing in Schools, PCB-Contaminated Caulk Found by the DOE in NYC Schools, www.pcbinschools.org/PCB-CONTAMINATED%20CAULK%20FOUND%20by%20the%20DEPARTMENT%20of%20EDUCATION%20in%20NYC%20SCHOOLS.pdf (last visited Mar. 2, 2010) (New York City Schools were found to be contaminated with PCBs as of November 2009).

Herrick, supra note 1, at 1052.

Id.
the amount allowed by federal law.footnote{73} The issue of PCB-contaminated school environments is thus gaining importance. As schools built in the mid-20th century age, PCBs leach into the surrounding materials and indoor air.footnote{74} Alternatively, renovation projects also may result in the release of PCBs into school environments.footnote{75}

Indeed, in 2001, the U.S. Environmental Protection Agency ("EPA") recognized this growing problem and issued a guide for school administrators called "Removing PCBs from Light Fixtures: Protecting Students from Hidden Dangers."footnote{76} In this guide, the EPA noted that many schools’ light ballasts contain PCBs, and that the risk of PCB leakage increases as these ballasts age.footnote{77}

II. EMERGENCE OF PCBs IN SCHOOLS AS A NATIONAL ISSUE

A. Pending Litigation

On January 14, 2008, the Yorktown School District filed a federal lawsuit against Monsanto Company, Pharmacia Corporation, and Pecora Corporation seeking remediation and indemnification costs associated with PCBs in its school buildings.footnote{78} The litigation is the first of its kind and is a case of first impression. In the lawsuit, Yorktown School District alleged that Old Monsanto, originally "Monsanto Chemical Company, was the sole U.S. maker of PCBs"footnote{79} and that the other named and unnamed Defendants manufactured, distributed, marketed, and sold PCBs.footnote{80}

In 2005, Yorktown School District responded to the PCB contamination problem by using taxpayer money to clean up tainted caulking in its schools.footnote{81}
Through its recent lawsuit, Yorktown School District now seeks remediation costs and expenses from Monsanto Company. It alleges products liability and negligence claims, seeking damages for existing and future school remediation costs and attorneys’ fees.82 The School District also seeks indemnification from Defendants for all past or present lawsuits by third parties, including students, teachers, or employees.83 The School District also specifically asks the court for a declaratory judgment “that Defendants are responsible for the [School] District’s [past and future] damages” and that Defendants will indemnify the School District for future remediation costs associated with the PCB contamination and claims by any persons associated with the PCB exposure.84

Plaintiff alleges that Old Monsanto,85 the sole manufacturer of PCBs, knew the chemicals were dangerous to human health as early as the 1940s and 1950s—long before the public knew of the dangers of PCBs and long before Congress banned the use of PCBs in construction.86 According to Plaintiff’s Complaint, an internal Old Monsanto memorandum from the 1950s reveals the...
opinion of the company’s medical department that the “eating of lunches in the manufacturing process departments, including those in which PCBs were manufactured, should not be allowed.”

Further, Plaintiff has referenced other internal memoranda to bolster its allegation that Old Monsanto formed a committee to address concerns of contamination caused by the manufacture and use of PCBs. Plaintiff alleged that the committee’s objective was to protect the “continued sales and profits of Aroclors [and] permit continued new development of uses and sales,” even while Old Monsanto documents acknowledged contamination from PCBs. According to documents referenced in the Yorktown Complaint, in forming the committee, Old Monsanto acknowledged that PCBs were then “nearly global environmental contaminants leading to contamination of human food (particularly fish), the killing of some marine species (shrimp), and the possible extinction of several species of fish-eating birds.”

The Yorktown School District Complaint points to a number of Old Monsanto’s internal documents that reveal incriminating statements made by the company. One such statement reads: “[t]here are however, a number of actions which must be undertaken in order to prolong the manufacture, sale and use of these particular Aroclors as well to protect the continued use of other members of the Aroclor series.” The School District highlights these internal documents that paint a bleak picture of a corporation attempting to maintain a profit center, despite alarming and growing evidence of the negative health effects of PCBs.

Yorktown School District’s “test” case is the first in which a public school district has alleged that Monsanto Company should be responsible for all cleanup and remediation costs associated with PCBs in its schools. The case will have important consequences nationally as more schools begin to test for PCBs and undergo remediation of contaminated school buildings.

88 Yorktown School District Complaint, supra note 17, at 5.
89 Id.
90 Id. at 5.
91 See id. at 6.
92 Id.
93 Id.
94 Lawyers for the Yorktown School District have indicated that the case has unofficially settled on confidential terms but that final settlement documents have not yet been filed. Telephone Interview with Kevin Madonna (Feb. 12, 2010). See also Letter from Rafael Vergara, White and Williams, LLP to Judge Stephen C. Robinson, U.S. District Judge for the Southern District of New York, 1 (June 11, 2009).
95 To the author’s knowledge, Monsanto Company has been previously embroiled in litigation over PCB contamination but not in relation to the cleanup of public schools. See, e.g., In re Paoli R.R. Yard PCB Litigation, 35 F.3d 717 (3d Cir. 1994); United States v. Pharmacia Corp., No. 02-C-0749-E, 2003 WL 22319070 (N.D.Ala. Aug. 4, 2003) (order settling litigation brought by the EPA to require Defendants to do a feasibility study to determine the extent and scope of PCB contamination in Anniston, Alabama); $700 Million Settlement in Alabama PCB Lawsuit, N.Y. TIMES, Aug. 21, 2003. Another similar, interesting lawsuit involved individual Plaintiffs suing
Remediation of PCB contamination in just one school building can cost hundreds of thousands of dollars. Therefore, the ultimate outcome in this test case against Monsanto Company will have far-reaching implications for the nation’s school districts.

B. A Brief Overview of Asbestos, Tobacco, and Lead Regulation

The Yorktown School District’s lawsuit against Monsanto Company is reminiscent of other past mass tort litigation involving such toxins as asbestos, formaldehyde, tobacco, and lead. These cases tend to hew to a general pattern. The industry at first denies that the product is harmful, denies liability, and claims there is insufficient evidence of human health concerns for it to stop producing or selling the product. In such cases, Congress has been loath to ban the product or mandate a federal warning in the absence of clear, undisputed scientific proof of danger to human health. Because the manufacturers of a potentially toxic product have no immediate incentive to fund studies to definitively prove that their product is dangerous the product remains on the market long after safety concerns are first raised, and the product is later discovered to have been highly toxic. Later, private litigants sue over harm from the toxic product that remained on the market. Historically, various products have thus stayed on the market despite burgeoning evidence of their dangers to human health.

Asbestos is just one example of a substance that the EPA did not heavily regulate until after manufacturers produced asbestos for many years and long
after concerns were raised about its safety. In fact, even today asbestos is not completely banned. Rather, pursuant to an EPA final rule in 1989, a court decision modifying the EPA rule, and a later administrative modification, the EPA only bans “new uses” and certain limited uses of asbestos pursuant to the Toxic Substances Control Act (“TSCA”).

Other highly toxic substances that have similarly remained on the market long after safety concerns about their effects on human health were raised include formaldehyde and tobacco in cigarettes. For example, in 1982, the Reagan Administration decided not to regulate formaldehyde, urging that its decision was based on scientific evidence. In reality, there exists circumstantial evidence that the decision was a premeditated political decision in which the EPA manipulated the scientific results to reach a desired result that would protect the formaldehyde industry. Two years later—based on the same information that it had in 1982—the EPA announced that it would regulate the use of formaldehyde, stating that the chemical was a potential carcinogen in humans.

106 Corrosion Proof Fittings v. EPA, 947 F.2d 1201 (5th Cir. 1991) (asbestos ban lifted because EPA had not found that alternatives were safer than asbestos), opinion clarified (Nov. 15, 1991).
107 See Garlow, supra note 104, at 36.
108 See 16 C.F.R. § 1145.4 (banning certain new asbestos compounds); 15 U.S.C. § 2605 (2010) (allowing the EPA to ban any substance that presents an unreasonable risk to health or the environment).
111 Wagner, supra note 109, at 1646-48. See also Watnick, Risk Assessment, supra note 56, at 1332-36, 1350-53.
112 Nicholas A. Ashford et al., A Hard Look at Federal Regulation of Formaldehyde: A Departure from Reasoned Decisionmaking, 7 HARV. ENVT. L. REV. 297, 313-14 (1983) (“Depending on the available data base, a study may take from two to forty years to complete In the many situations where a delay will be inappropriate, the agency will have to treat the question of carcinogenic risk as if it were a trans-scientific issue.”); Wagner, supra note 109, at 1648; Watnick, Risk Assessment, supra note 56, at 1350-53.
114 Id. Formaldehyde continues to surface as a current concern as mobile homes built with pressed wood in the aftermath of Hurricane Katrina may subject occupants to high interior levels of formaldehyde. Symposium, Harnessing the Power of Information for the Next Generation of Environmental Law, 86 TEX. L. REV. 1601, 1613 (June 2008).
In the case of cigarettes, Congress was also slow to establish federally mandated warnings, let alone an outright ban on the sale of cigarettes or tobacco. Although the Journal of the American Medical Association published a study in 1950 showing that a link existed between smoking and lung cancer, it was not until 1964 that the Surgeon General first reported on the dangers of smoking. Then it was not until 1965 that Congress first passed mandatory federal cigarette labeling laws. It is even more extraordinary that even in the late 1990’s, the tobacco industry still had not openly acknowledged a definitive link between smoking and lung cancer.

The history of lead paint sales offers an additional example of big industry’s ability to continue selling toxic products despite safety concerns. The lead paint industry actually funded studies to determine the health effects associated with lead paint. However, lead paint manufacturers still actively promoted the sale of lead paint even after they became aware of the clear dangers associated with its use.

And so a familiar story unfolds in the case of PCBs. Like those before it, these chemicals were presumed innocent until proven guilty and stayed on the

115 See generally Wynder, supra note 110.
117 See David Stout, Direct Link Found Between Smoking and Lung Cancer, N.Y. TIMES, Oct. 18, 1996, at A1, available at http://www.nytimes.com/1996/10/18/us/direct-link-found-between-smoking-and-lung-cancer.html?pagewanted=1. “Tom Lauria, an institute spokesman, said the Tobacco Institute’s position has been that ‘the causal link remains to be established’ between smoking and lung cancer. He said the institute recognized that ‘smoking has been shown to be an important risk factor in heart disease, lung cancer and emphysema.’” Id.
market long after safety issues first surfaced.122 Indeed, as early as 1937, a Harvard University researcher named Dr. Cecil K. Drinker raised concerns about the safety of PCBs123. Ignoring or minimizing these concerns, businesses in the PCB industry continued to profit from sales.124 Over the course of the last century, PCB manufacturers either intentionally or negligently deceived the public about the safety of PCBs and continued to profit from their sale.125 “Although the sale of PCBs has been banned in the United States for eighteen years, billions of pounds are still with us”126 These substances are “lodged in the fatty tissues of humans and other animals, passed on to new generations through mother’s milk and contaminated food, causing cancer, birth defects, and sterility.”127

C. The Current PCB Issue Develops: PCBs in a Manhattan School

Elementary Public School 199 (“Public School 199” or “PS 199”) on the Upper West Side of Manhattan was one of the schools that the \textit{New York Daily News} (“\textit{Daily News}”) tested for PCB contamination.128 Public School 199 (built in 1968 when the use of PCBs in construction was common129) had the highest level of PCBs in its outdoor caulking of all of the eight schools tested in New York City by \textit{the Daily News}.130 These \textit{Daily News} articles announcing the PCB findings in city schools131 set off a firestorm of events in New York City, as parents demanded governmental action.

In the aftermath of these news stories, parents and teachers at Public School 199 learned that the New York City Department of Education (“DOE”) had conducted air sampling tests over the weekend of March 31, 2008 to determine if PCBs had contaminated the air in the school.132 The DOE conducted the tests after it and the New York City School Construction Authority (“SCA”)133

122 In \textit{Transwestern Pipeline Co. v. Monsanto Company}, 53 Cal.Rep.2d 887, 890 (Ct. App. 1996), the court stated that Monsanto learned that PCBs were persistent in the environment and that in 1970, it began placing warning labels on some of its products. \textit{See also} Francis, \textit{supra} note 30, at 5.

123 \textit{See generally} Drinker, \textit{supra} note 87.

124 “For the few extra years of profit for Monsanto . . . , we are all now paying the price.”125 Francis, \textit{supra} note 30, at 9. \textit{See} discussion \textit{infra} Part IV.D.2.

125 \textit{See} Francis, \textit{supra} note 30, at 5.

126 \textit{Id. at} 9.

127 \textit{Id.}

128 \textit{See} Egbert, \textit{Toxin Turns Up}, \textit{supra} note 21.

129 \textit{See} \textit{supra} notes 1-2 and accompanying text.

130 \textit{See} Egbert, \textit{Toxin Turns Up}, \textit{supra} note 21.

131 \textit{Id. See} Egbert, \textit{PCBs Found}, \textit{supra} note 21; Egbert, \textit{Probe Urged}, \textit{supra} note 21.

completed an extensive and dusty window replacement project at Public School 199 in the period between January and March 2008. Following results that showed elevated levels of PCBs in the air samples taken from the cafeteria at Public School 199, the DOE closed the school for an emergency "custodial" cleaning over the weekend of April 4, 2008. After this cleaning at Public School 199 and the breaking of the Daily News stories, parents in Manhattan mobilized to gather information about the laws and protocols specifying the safe removal and cleanup of PCBs in schools. Parents and community leaders wanted to know how the DOE allowed this PCB release into the school building during the window replacement project—particularly while school was in session—and why the DOE continued to allow

with author). Parents wrote: "We are particularly concerned because over the course of the last two months, the SCA has undergone an extensive project to replace all the windows in the classrooms of Public School 199, at times when our children and staff were present in the school. We have first hand knowledge from parents who were present during this process that it was an extremely dusty procedure." Moreover, multiple witnesses reported to the PTA that not only was the window replacement project extremely dusty in nature, but that children and teachers had actually been involved in wiping up dust in the school building. Id.

Letter from Jerrold Nadler, New York’s Eighth Congressional District representative to the U.S. House of Representatives; Scott Stringer, Manhattan Borough President; Thomas Duane, New York State Senator; Linda B. Rosenthal, New York State Assembly Representative; and Gale Brewer, New York City Council Member, to Alan Sternberg, Regional Administrator, EPA Region 2 (May 18, 2008) (on file with author) [hereinafter Representative Jerrold Nadler, May 18 Letter to EPA].

Air sampling results showed concentrations in the air in excess of 500 nanograms per cubic meter ("ng/m³"). N.Y. CITY DEP’T OF EDUC., CAULKING SURVEY RESULTS, supra note 132. Experts indicate concentrations in excess of 300 ng/m³ mandate precautions for adults. Fromme, supra note 10, at 666. Also, recent EPA pronouncements indicate that Public Health Levels for PCBs in indoor air for school-age children should not exceed 300 ng/m³ and should be as low as is "reasonably achievable." U.S. Envtl. Prot. Agency, Public Health Levels for PCBs in Indoor School Air, www.epa.gov/pcbsincaulk/maxconcentrations.htm (last visited Mar. 2, 2010) [hereinafter EPA Public Health Levels for PCBs].

"Custodial Cleaning" was the description given to the cleaning by the New York City DOE when parents and Representative Jerrold Nadler asked about the process. See Representative Jerrold Nadler, May 18 Letter to EPA, supra note 134.

The P.S. 199 building was closed to the public over the weekend of April 4, 2008, and the DOE hired cleaning crews to wipe the building clean of dust. The crews did not clean books nor did they clean the heating, air conditioning, or ventilation systems. PTA Apr. 3 Letter, supra note 133; Letter from Sharon Lustig, Co-President, P.S. 199 PTA, to Joel Klein, Chancellor, DOE, and Ross Holden, General Counsel, SCA (Apr. 10, 2008) [hereinafter PTA Apr. 10 Letter] (on file with author); Letter from Johnna Hampton and Sharon Lustig, Co-Presidents, P.S. 199 PTA, to Alan Sternberg, Regional Administrator, EPA Region 2, and George Pavlou, Deputy Regional Administrator, EPA, Region 2 (May 5, 2008) [hereinafter PTA May 5 Letter to EPA] (on file with author). The DOE characterized the work as a "full-scale custodial cleanup of the building" by the SCA. Representative Jerrold Nadler, May 18 Letter to EPA, supra note 134. PCB indoor air levels at P.S. 199 were elevated to above 500 ng/m³ in the cafeteria. Normal background levels are considered to be less than 50 ng/m³. OSHA prohibits working conditions for adults where the levels of PCBs in the air exceed 1000 ng/m³. Representative Jerrold Nadler, May 18 Letter to EPA, supra note 134.

Information about this process on file with author.
these toxins in school buildings throughout New York City.139

Specifically, parents questioned why the DOE and the SCA had not tested to
determine the toxicity of the caulking material surrounding the windows prior to
the start of the window replacement project at Public School 199.140 Parents
also demanded to know what the EPA was going to do to correct the
contamination at PS 199.141

Parents and community leaders took action in a variety of ways. A Parent
Teacher Association ("PTA") officer at Public School 199 testified before the
New York City Council. Many parents wrote letters to the DOE, the EPA and
elected officials. The PTA sought the advice of an attorney and hired an expert
environmental consultant.142 Many more community members participated in a
rally and press conference with U.S. Congressman Jerrold Nadler (whose district
included Public School 199) and other elected officials outside the school on
Sunday, May 18, 2008.143 On May 18, responding to constituent concerns about
Public School 199, Congressman Nadler and other local politicians also wrote to
the EPA urging the federal agency to oversee the environmental cleanup of
Public School 199.144

After receiving the letter, the DOE and the SCA agreed to engage in a full-
scale environmental cleanup of the school in consultation with the EPA.145
Thus, the efforts of parents, teachers, and local and federal politicians resulted in
a large-scale remediation of the PCB contamination at Public School 199 over
the summer of 2008.146

139 Ultimately, the PTA of P.S. 199 sent its own samples (including carpets, filters, and other
items from the school) to an independent testing lab and found alarming levels of PCBs in the
carpeting and other materials—materials that students used and came into close contact with every
day. Testing Results on file with P.S. 199 PTA, school administration and SCA. See also, PCBs —
Mandatory Testing in Schools, PCB Caulk and Soil Sample Reports,
thttp://www.pcbinschools.org/Sampling%20Reports.htm (listing sample results for various schools in
New York City school system) (last visited Mar. 2, 2010).
140 PTA Apr. 10 Letter, supra note 137.
141 PTA May 5 Letter to EPA, supra note 137.
142 Further information about this process is on file with the author. The author served as Co-
President of the P.S. 199 PTA during the 2008-09 school year. The P.S. 199 PTA has consulted
with Dr. Nancy Rothman, a private consultant and CEO of New Environmental Horizons, Inc.,
143 Press Release, Jerrold Nadler, 8th Congressional District of New York, Elected Officials Call
for EPA to Supervise Testing and Cleanup at P.S. 199 and Center School on Upper West Side (May
Center School is a middle school that occupied the third floor of the P.S. 199 building and
underwent the same window renovation and replacement process.
144 See generally Representative Jerrold Nadler, May 18 Letter to EPA, supra note 134.
145 Letter from George Pavlou, Deputy Regional Administrator, EPA Region 2, to Johanna
Hampton and Sharon Lustig, Co-Presidents, P.S. 199 PTA, at 2 [hereinafter EPA Reply Letter to
146 See Minutes of meeting attended by DOE; SCA; Dept. of Health; P.S. 199 PTA; Stan Alpert,
P.S. 199 Legal Advocate; Nancy Rothman, CEO of New Environmental Horizons, Inc., PS 199
Consultant, and Ann Casey, Special Projects, Northeast Analytical, Inc. (May 27, 2008) (on file
Presently, authorities still do not know the extent of the contamination caused by the DOE’s window replacement project, nor the potential harm from exposure to PCBs at Public School 199. Evidence shows that the old window caulking and/or the window replacement project contaminated both the inside of the school building and the soil on the perimeter of the school building. Soil tests conducted by the New York City DOE and the SCA showed that the soil around the perimeter of the school was in need of remediation. As a result, the DOE and the SCA attempted to remediate the soil around the building during the summer of 2008. The EPA stated that it would monitor the work of the DOE and the SCA on this issue and provide technical assistance to address concerns about PCBs remaining in the school environment.

Despite these efforts toward remediation in one school building in New York City and in the Yorktown School District, hundreds of school buildings across the country still contain PCBs in their building materials. This contamination puts children and staff at risk of exposure to these toxic compounds on a daily basis.

III. EXISTING REGULATION OF PCBs IN SCHOOLS

A. Toxic Substances Control Act

Under TSCA, Congress prohibited the continued use of PCBs in the United States, but made exceptions for uses carried out in a “totally enclosed manner” and other authorized uses. The EPA thus allows the use of PCBs in certain electrical equipment when such uses are carried out in a “totally enclosed manner.” The EPA also allows other uses of PCB material that do not present an “unreasonable risk of injury to health or the environment.” The EPA generally considers the continued use of exposed physical building materials containing PCBs to be an “unauthorized use” that presents an “unreasonable risk

147 See chart of air testing results that SCA provided to P.S. 199 PTA (June 15, 2009) (on file with author).
148 Minutes of meeting attended by DOE; SCA; Dept. of Health; P.S. 199 PTA; Stan Alpert, P.S. 199 Legal Advocate; Nancy Rothman, CEO of New Environmental Horizons, Inc., PS 199 Consultant, and Ann Casey, Special Projects, Northeast Analytical, Inc. (May 27, 2008) (on file with author).
149 Id.
150 Id.
151 See EPA Reply Letter to PTA, supra note 145.
152 See supra notes 1-5 and accompanying text.
155 40 C.F.R. § 761.30 (2010).
of injury to health." Therefore, the owners of buildings containing PCBs in their caulking or sealants are technically using PCBs in violation of TSCA regulations.

Under TSCA, EPA has the authority to issue fines and penalties to owners of buildings containing PCBs of greater than 50 parts per million ("ppm") in its construction materials. However, the EPA has not routinely exercised such authority. Enforcement agents for EPA Region 2 (which includes New York City) have indicated that imposing fines on the owners of buildings containing PCBs at levels of 50 ppm or greater would not be administratively feasible nor would it encourage compliance given the vast number of buildings throughout Region 2 that contain PCBs at such a high level. Were it to enforce these regulations and begin fining building owners whose buildings contain PCBs in excess of 50 ppm, it would have to fine so many building owners that the effort would be all encompassing and not effective at reducing exposure to PCBs.

Pursuant to its authority under TSCA, the EPA has, however, issued and enforced regulations that apply to the disposal of materials containing PCBs. Under these regulations, materials containing more than 50 ppm of PCBs present an unreasonable risk of injury to health and must be treated as bulk product waste (hazardous waste). Such waste materials containing PCBs must thus be treated and disposed of at a hazardous waste facility. The protocol for disposal involves carting the materials to a hazardous waste site and disposing of the materials properly to ensure they do not contaminate groundwater or surrounding air. In sum, regulations under TSCA governing the continued presence of PCBs in building materials are limited in scope and not currently being enforced by the EPA.

159 Telephone Interview with James Hacklar and Dan Kraft, EPA (Apr. 11, 2008). See also Herrick, supra note 1, at 1052 (indicating that out of twenty-four buildings tested in Boston, eight contained PCBs in building materials and that, therefore, imposing fines on the owners of such buildings would not be feasible).
160 Id.
162 Id. Waste material containing more than 50 ppm PCBs must be treated as hazardous waste. Such waste specifically includes materials from the demolition of buildings and other man-made structures, coated or serviced with PCBs. Id.
164 Although federal law requires disposal of PCB-containing material at hazardous waste sites, presently there is no systematic plan to permanently destroy existing PCB-containing material once deposited in such waste sites. In contrast, European countries have begun the process of permanently ridding the environment of PCBs by incinerating them in hazardous waste incinerator plants.
Not only has the EPA failed to strictly enforce TSCA and regulations under the Act with regard to PCBs in school buildings, the EPA has only recently determined a safe threshold level for airborne PCBs in indoor air in schools.\(^{165}\) While determining these safe “Public Health Levels”\(^{166}\) is a crucial first step in ascertaining whether indoor air in a given school is safe for children to breathe, the EPA has not gone far enough. Neither federal law nor the EPA requires schools to test and determine if indoor airborne PCB levels fall within these Public Health Levels.\(^{167}\) Moreover, the EPA does not require testing even in cases where parents or administrators have reason to suspect that PCBs contaminate a school’s air. Parents might suspect such contamination where a school was built or renovated in the relevant time period, or has undergone renovation work that could have released PCBs into air, such as the replacement of windows and caulk containing PCBs.\(^{168}\) Furthermore, even if indoor air contamination is found to exceed the Public Health Levels—as it was at Public School 199\(^{169}\)—the EPA does not mandate the remediation of the contaminated indoor school air.

To date, the EPA has not to date taken a leadership role in the PCB cleanup efforts in schools.\(^{170}\) The EPA’s response to the situation at Public School 199 in 2008 made apparent its lack of willingness to take a leadership role. Parents, politicians, and community leaders in New York City wrote a letter to the EPA in 2008 asking the EPA to take a leadership role by initiating an emergency remedial response to the PCB contamination in Public School 199.\(^{171}\) The EPA
refused to do so, citing its lack of obligation to initiate an agency response under federal law where another competent agency can take on the role. In the case of Public School 199, the EPA determined that the New York City DOE was able to monitor and manage the cleanup. The EPA would not participate, other than in an advisory capacity. The EPA allowed the DOE and the SCA to take on this role even though the agencies themselves had caused the widespread contamination of the school through the window renovation project in early 2008.

The EPA stated that it would supervise the work of the DOE and the SCA and provide technical assistance to address concerns about PCBs remaining in the school.

Similarly, in the Yorktown School District, New York, the EPA did not take an active role in the cleanup of contaminated schools. In Yorktown, the School District chose to clean up the PCB-contaminated soil in accord with the Agency’s self-implementing regulations. Subsequently, the EPA stated that the School District had not properly disposed of contaminated soil in compliance with regulations and the EPA threatened to take action against the School District for its continued use of the PCB contaminated caulk in its school buildings in contravention of TSCA. Ultimately, the School District remediated the sources of PCBs in and around its schools, including all of the PCB containing caulk.

C. New Legislative and Regulatory Developments

Although the EPA has not yet taken a proactive stance with regard to the problems that PCBs pose in schools, the EPA finally announced plans to address this issue in October 2008. Amid the controversy over health risks that started when the Daily News first disclosed that eight New York City schools...
were contaminated with PCBs contained in obsolete caulking, the EPA stated that it planned to promulgate new regulations to address the problem of PCBs leaking from paints and caulks into schools and homes. The EPA recently issued its public health guidance, “Public Health Levels for PCBs in Indoor School Air.” Although this guidance is welcome, the EPA has not implemented new rules that require any testing or remediation programs on the part of schools to ensure that their indoor air falls within the recommended safe levels. Given that the EPA rulemaking process can take years to complete, at least one expert has suggested that, in the interim, the EPA should exercise its authority under TSCA and issue an emergency enforcement order requiring schools to test for the presence of PCBs in their buildings.

The EPA’s draft strategic plan for 2009-14, issued on September 30, 2008, shows that the EPA is beginning to take initiative regarding PCBs in caulks. In its plan, the EPA promises that it “will explore more aggressive approaches to address legacy risks and phase out the ongoing use of [PCBs] to address the new concerns about the presence of PCBs in caulks and paints used historically in schools and in gas lines that have leaked into homes.”

In May 2009, the U.S. House of Representatives passed legislation that provides federal funding for modernization, renovation, and repair projects as part of a larger effort to help schools clean up PCB contamination. This legislation, known as the “21st Century Green High-Performing Public Schools Facilities Act,” would provide grants and low-interest loans to local educational agencies for the “removal, abatement, or interim controls of PCBs during the construction, modernization or repair of public schools.” The House bill is now in the Senate for consideration. It is worth noting, however, that schools might receive as little as $5,000 to fund a renovation project under the Act.
Because remediation can cost hundreds of thousands of dollars, a meager $5,000 would not be adequate to fund a comprehensive remediation effort involving PCB-laden caulk.

Finally, New York State Assemblywoman Linda Rosenthal, whose district includes Public School 199, re-introduced a bill that would require schools to test and report PCB levels in school buildings in cities of more that one million people. The bill would also require schools to report test results to the State Department of Health and the commissioner. Light ballasts, transformers, caulking, materials adjacent to caulking, and soil in and around school buildings are examples of the type of materials that schools would test for PCBs. The State would reimburse the schools at a rate of fifty dollars for each test, an inadequate amount to cover the full cost of materials testing, but a step in the right direction. In turn, schools would report testing results to the U.S. Department of Health. The Department of Health would then post results on its website on a school-by-school basis. Unfortunately, the New York State bill does not provide recourse if a school’s testing results in discovery of high levels of PCBs. Assemblywoman Rosenthal has reintroduced the bill, but this time with additional support from members of the New York State House and Senate.

D. New York State Education Department Protocol For Renovation Involving PCB-Containing Materials

In June 2007, the New York State Education Department (“Education Department” or “NYSED”) officially recognized the dangers associated with the release of PCBs in school buildings that undergo construction or demolition. In recognition of these dangers, the Education Department passed a “Protocol for Addressing Polychlorinated biphenyls (PCBs) in Caulking Materials in School Buildings.”

Id.

Id.

The P.S. 199 PTA spent less than $100 for each sample that it collected for PCB analysis (notes on file with author).

Id.

Id.

Id.

Buildings." The Protocol, which became effective in January 2008, contains guidelines for the removal of PCB-contaminated material from school buildings. The Education Department developed the protocol in consultation with the New York State Department of Health ("NYSDOH"), Division of Environmental Health Assessment, and Bureau of Toxic Substance Assessment. Among other things, the Protocol provides the following:

For any school buildings constructed or renovated between 1950 and 1977 and undergoing current renovation or demolition, NYSED and NYSDOH recommend that the building(s) be evaluated prior to the renovation work to determine whether they contain caulk that is contaminated with PCBs. If so, a plan should be developed to address potential environmental and public health concerns about potential PCB exposure.

The Protocol indicates that to adequately characterize PCB contamination, a "professional consultant with appropriate experience in environmental investigation and testing should prepare a detailed workplan to guide [the] work." It also calls for caulk and soil sample collection before any construction projects in buildings constructed or renovated between 1950 and 1977. In the event the caulk or soil samples reveal the presence of PCBs, the Protocol calls for a "site specific abatement plan to address potential environmental and public health concerns."

The New York State Protocol refers to instructions in the U.S. Department of Housing and Urban Development's "Guidelines for the Evaluation and Control of Lead-Based Paint Hazards in Housing." For additional authority, the Protocol also references the EPA's regulation of the disposal of caulk.

201 Id.
202 Id. at 1-2.
203 Id.
204 Id. at 1-2.
205 Id. at 2.
206 Id. at 3.
207 Id. at 3.
Under those TSCA regulations, caulk containing concentrations of PCB in excess of 50 ppm must be properly disposed of at an approved facility.209

The NYSED does not require contractors or the SCA to follow the New York State Protocol, but merely offers recommendations for addressing PCBs in school buildings.210 Thus, although the law does not require New York schools or school construction authorities to test for PCBs prior to renovation or construction work, the Protocol recognizes the importance of such testing.211

It is important to note that although the Protocol was in effect at the time the DOE and SCA began the window replacement project at Public School 199, the DOE and SCA did not follow it.212 Although the Protocol calls for the hiring of an environmental consultant to prepare a detailed work plan prior to any work and for the testing of soil and caulk, neither of these occurred at Public School 199.213 Neither the DOE nor the SCA hired an environmental consultant with expertise in the area of PCB contamination to oversee testing and to prepare a detailed workplan. Also, neither the DOE nor the SCA did any prior testing—of soil or caulk—to determine whether PCBs were present in the window caulking at Public School 199.214 Moreover, neither the DOE nor the SCA consulted an environmental expert to “develop a plan to minimize health and safety concerns” as the New York State Education Department recommends in its Protocol.215 The failure to consult with an environmental expert and failure to follow the New York State Education Department Protocol proved to be an extremely costly mistake. The DOE and SCA spent a tremendous amount of effort and money remediating the PCB contamination at Public School 199.216 Additionally, hundreds of children were exposed to PCB dust in the air and on school building surfaces prior to the remediation efforts that took place in the summer of 2008.217

209 40 C.F.R. 761.62 (2010). See discussion supra Part III.A.
210 See generally N.Y. STATE PROTOCOL, supra note 200, at 1.
211 See id.
212 Representative Jerrold Nadler, May 18 Letter to EPA, supra note 134, at 1. See generally N.Y. STATE PROTOCOL, supra note 200.
213 See id.; PTA May 5 Letter to EPA, supra note 137.
214 See PTA Apr. 10 Letter, supra note 137.
215 N.Y. STATE PROTOCOL, supra note 200, at 1-2.
216 See Press Release, Jerrold Nadler, 8th Congressional District of New York, Area Elected Officials Win Remediation of PCBs at P.S. 199 (June 10, 2008); Letter from Ross Holden, General Counsel, SCA, to Sharon Lustig and Valerie Watnick, Co-Presidents, P.S. 199 PTA (Mar. 31, 2009) (discussing prior remediation efforts at the school) (on file with author).
217 See Letter from Sharon Lustig and Valerie Watnick, Co-Presidents, P.S. 199 PTA, to Joel Klein, Chancellor, DOE, and Sharon Greenberger, President, SCA (Mar. 19, 2009) (calling for further remediation efforts at P.S. 199) (on file with author); PTA Apr. 3 Letter, supra note 133 (detailing facts surrounding the window replacement project) (on file with author); PTA Apr. 10 Letter, supra note 137 (detailing facts surrounding the window replacement project) (on file with author); Representative Jerrold Nadler, May 18 Letter to EPA, supra note 134, at 1 (detailing facts surrounding the window replacement project).
E. Other Nationwide Developments

In June 2009, the Massachusetts Teachers Association detected high levels of PCBs in the construction materials at area schools in the town of Worcester, Massachusetts. In light of these concerns about toxins in the caulks and sealants in the building materials, the town’s schools considered closing to address the problem of PCB contamination in the schools.

In 2008, a University of Iowa study reported that researchers found PCBs in the air outside Chicago schools. Researchers collected samples from more than forty Chicago schools and found concentrations of PCBs in the air outside virtually every school tested. Researchers hypothesized that the PCBs could have come from old paint because the PCB compound found in the air was the same compound previously found in wastewater near paint factories. Representatives from the Chicago public schools stated they were not aware of the study and that they would need to conduct further sampling before deciding on a course of action.

Finally, in September 2009, Naomi Gonzalez, a mother and teacher’s assistant from Bronx County, New York, filed suit against the New York City DOE and the SCA for declaratory and injunctive relief under the citizens’ action provision of TSCA. The suit alleged that TSCA prohibits the use of PCBs in caulk and that defendants failed to address the “known and undisputed presence” of PCBs in caulk at Public School 178 (attended by plaintiff’s children). The suit sought a declaration that the defendants are in violation of TSCA and an order compelling defendants to test, remediate, and confirm the absence of PCB contamination at the school attended by plaintiff’s children.

220 Id.
222 See Hu, supra note 221, at 7873.
223 See Hawthorne, supra note 221.
224 Id.
227 Gonzalez Complaint, supra note 225, at 7.
228 Gonzalez Complaint, supra note 225, at 7. In March 2009, Gonzalez filed a notice of intent to sue letter with the EPA asking the EPA to intervene to enforce its own TSCA regulations, which
The parties involved recently settled this federal lawsuit, the first of its kind. In a press release dated January 19, 2010, the New York Lawyers for the Public Interest announced that Gonzalez had provisionally dismissed the suit in light of the DOE’s agreement to carry out a PCBs pilot study that will include her children’s school and develop a city-wide plan to address the problem of PCB contamination in New York City’s schools.229

F. The Stockholm Convention and PCBs

In 2001, representatives from all over the world convened to discuss pollution from persistent organic pollutants (“POPs”).230 Persistent organic pollutants are carbon-based toxins that do not break down in the environment, accumulate in the fatty tissue of living things and are toxic to humans and wildlife.231 The United States signed the Stockholm convention232 on May 23, 2001, but has not ratified it as a party.233 PCBs are listed as one of twenty-one (“POPs”) in Annex A234 to the Convention. With regard to POPs, parties to the Convention agree to take “legal and administrative measures necessary to eliminate” the “production and use of the[se] chemicals” and the “import and export of the[se] chemicals.”235 Additionally, according to a special section of the Convention dedicated to PCBs, parties (also known as member countries) must endeavor to eliminate PCBs in equipment such as transformers, capacitors, or other receptacles containing liquid stocks of PCBs, ban imports and exports of PCB-containing equipment, “make determined efforts to lead to environmentally sound waste management of liquids containing PCBs,” and report on their own

230 See Stockholm Convention, supra note 36, at 1.
233 Id.
235 See Stockholm Convention, supra note 36, at Art. 3, Annex A.
progress to the "Conference of the Parties" every five years.236 To date, at least forty-two countries have filed five-year status reports; however, the United States remains a non-party to the Convention and thus has not filed such a report.237

The Stockholm Convention on Persistent Organic Pollutants brings national and international attention to an important environmental issue and requires member countries to engage in public reporting of their efforts. The fact that countries around the world have signed the Convention signifies recognition of the need to control POPs—specifically PCBs, a particularly toxic class of POPs—and to report back on the status of such efforts. The Convention is thus a step toward eliminating the threat of these man-made toxins.

IV. PROPOSED RESPONSES: ECONOMIC, LEGAL, AND POLICY REASONS TO HOLD MONSENTO LIABLE IN THE YORKTOWN LITIGATION

A. Overview and Mandates of a New Federal Remediation Program

The following section outlines a Model PCB Testing and Remediation Act (the "Model Act") which would call for: 1) a federally mandated program for testing construction materials and soil in and around schools built during the period when PCBs were commonly used in construction; 2) a federally mandated program of indoor air testing in schools where contamination is suspected to ensure that school air levels fall below the "Public Health Levels" for PCBs in indoor air recently established by the EPA;238 3) the EPA to take permanent and interim action, including containment and proper removal of PCB-contaminated materials; and 4) federal enforcement of existing law to ensure that those who release PCBs into school environments are held criminally or civilly liable for their actions.

B. Existing Regulatory Frameworks

In considering an effective legal framework for remediation of PCBs in schools, lessons from past legislative frameworks regarding toxic substances are instructive. Initially, any remediation and removal program should be federally mandated so that compliance and enforcement is comprehensive rather than piecemeal. A framework in which certain states continue to operate with PCBs in their school buildings whereas other states, conversely, remove PCBs from their schools pursuant to local regulation, will be ineffective at solving the

236 Id. at Annex A pt. II.
238 See EPA Public Health Levels for PCBs, supra note 135.
national problem. A federal regulatory framework, on the other hand, would ensure that efforts to eradicate PCBs from our schools would be uniform from state to state. Also, a federal framework could begin to operate immediately. A federally mandated program of testing and remediation would also ensure that local school districts pursue remediation first. Pursuing remediation as a first step is preferable to that of seeking judicial resolution of liability issues surrounding PCB remediation. Judicial processes can be very lengthy. In the absence of a federal mandate to remediate contamination immediately, the judicial process will result in prolonged exposure of school children currently attending PCB-contaminated schools.

Congress has historically been willing to tackle regulation and remediation of a toxic chemical by first regulating the substances that affect children in schools. Then, as a second step, Congress moves on to regulating the same toxic substances, but in other public buildings.

A new federal testing and remediation program for PCBs could be modeled on the Asbestos Hazard Emergency Response Act ("AHERA") which Congress designed to protect elementary and secondary school children from the hazards of exposure to airborne asbestos. Under TSCA, the EPA first issued its Asbestos-in-Schools rule to deal with the asbestos problem in schools. Later, in 1986, the AHERA established a more comprehensive regulatory framework. Under this comprehensive framework, the EPA manages asbestos and its removal from schools. AHERA requires local agencies to inspect school buildings for asbestos and then develop asbestos management plans in accordance with AHERA. The Act also requires agencies to make these management plans available to the public and follow AHERA accreditation requirements with regard to local contractors and labs. A school that fails to comply with AHERA is potentially subject to both civil and criminal penalties. Fines for violating the Act range from $5,000 per day for negligent failure to comply up to $25,000 per day for willful violations. Although there is no private right of action for damages under the AHERA, parents can sue...
under the Act in attempts to make a school safer from asbestos.245

The requirements that schools inspect their buildings and manage asbestos therein have been successful. Ninety-four percent of schools have adopted AHERA implementation programs.246 As of 2008, thirty-nine states have adopted plans for accreditation of contractors permitted to inspect and manage asbestos in schools.247 Two years after its original passage, Congress extended the scope of AHERA to include the regulation of asbestos contractors working in public and commercial buildings.248

Similarly, Congress first addressed the dangers of lead paint to children by passing the Residential Lead-Based Paint Hazard Reduction Act of 1992.249 Congress has not crafted specific federal legislation to address the issue of lead paint in schools. However, schools and local agencies can and do reference the U.S. Department of Housing and Urban Development's ("HUD") Technical Guidelines for the Evaluation and Control of Lead-Based Paint Hazards in Housing ("Technical Guidelines for Lead-Based Paint").250 HUD promulgated the Technical Guidelines for Lead-Based Paint under the Lead-Based Paint Hazard Reduction Act of 1992.251 When the New York Education Department crafted its New York State Protocol for handling PCBs in the renovation of school buildings, it specifically referred to the HUD's Technical Guidelines for Lead-Based Paint.252 Although no study has revealed the number of schools that actually contain lead-based paint,253 Congress was willing to regulate this toxic substance because almost half of the nation's schools were built before 1959 (when lead paint was first regulated),254 and it is likely that many schools do

246 See Sutak, \textit{supra} note 242, at 443.

247 Id.

249 42 U.S.C. § 4851 (2010). According to Dr. David Carpenter, M.D., "PCBs do the same things that exposure to lead does, causing a reduction of IQ by some 5-7 IQ points, creating a shorten attention span and an increase in disruptive behavior." Dr. Carpenter is Director of the Institute for Health and the Environment at the University at Albany and a Professor of Environmental Health and Toxicology at the School of Public Health. \textit{See} Institute for the Health and the Environment, University of Albany, http://www.albany.edu/ihe/members.htm (last visited Mar. 5, 2010).

250 HUD GUIDELINES, \textit{supra} note 208. \textit{See} N.Y. STATE PROTOCOL, \textit{supra} note 200.

252 N.Y. STATE PROTOCOL, \textit{supra} note 200.

254 Kenneth M. Reiss, \textit{Note}, \textit{Federal Regulation of Lead in Drinking Water}, 11 VA. ENVT. L.J. 285, 289 (1991/1992) (noting that forty-six percent of the nation's schools were constructed before 1959 when lead paint was still widely used).
contain lead paint. Likewise, because of the likelihood that many schools currently in use today contain PCBs in their building materials, Congress should comprehensively regulate testing and remediation of these materials.

C. Components of New Federal Legislation

1. Initial Testing of School Building Materials and Subsequent Testing of Indoor Air in Schools Where PCB Contamination is Found

Congress should draft new legislation that addresses two routes of PCB exposure in schools: (i) building materials containing PCBs that may leach into the air, soil, or surrounding building materials; and (ii) PCBs already present in the indoor air of schools. As an initial step, such a Model Act would require testing of physical construction materials and suspected sources of potential PCB contamination in schools built or renovated between 1940 and 1977. Construction materials that should be tested include caulking, joint sealants, and old light ballasts. Additionally, legislation should require schools to conduct soil sampling if PCB contamination is found in school materials. Soil sampling tests are neither expensive nor time-consuming. Additionally, these soil and material tests would indicate whether individual schools require further testing and remediation. New York State Assemblywoman Linda Rosenthal has introduced legislation that would require such testing and would reimburse schools up to fifty dollars per sample. This legislation would help schools afford at least part of the price associated with these initial tests, which cost around $75 a sample. Requiring this type of initial testing on a federal scale would help identify the magnitude of the national problem by revealing the number of schools in the United States with PCB contamination. Federally mandated testing programs would ensure that schools in different states base their testing procedures on a uniform federal standard and conduct testing in a like manner.

255 See Reiss, supra note 254, at 289.
257 PCBs - Mandatory Testing in Schools, supra note 81 (noting that the District removed PCB-containing material from the joint sealants at French Hill elementary in the Yorktown School District).
258 The EPA recommends replacing older light ballasts in schools as they may contain PCBs. See REMOVING PCBs FROM LIGHT FIXTURES, supra note 76.
259 At French Hill Elementary in Yorktown, the soil around the building was tested only after construction materials from the school were found to contain PCBs. PCBs – Mandatory Testing in Schools, How This Started, http://www.pcbinschools.org/How%20this%20started760.htm (last visited Mar. 5, 2010).
261 As discussed above, the federal government has in the past spearheaded such efforts with
Federally mandated building material testing would not be done to waylay removal of PCBs from school buildings, but would instead be a first step toward the removal of PCBs and toward meeting newly established federal safety criteria (see discussion of safety criteria in section IV(C)(2) below).262 Schools constructed in the relevant time period could conduct testing of the physical building materials on a priority basis. For example, schools about to undergo renovations could be required to test first, and then other schools constructed in the relevant time period could be required to test building materials for PCBs. In this manner, schools could determine whether caulking contained PCBs in excess of 50 ppm (a level in excess of federal law).263 After determining the level of PCBs, schools could then consider whether additional remediation would be necessary and whether TSCA would mandate any treatment of waste generated from a remediation project as hazardous waste.264

Schools need not initially perform extensive indoor air sampling and monitoring because such testing is expensive and time-consuming. A federally mandated air quality testing program would only require air quality sampling and monitoring in those schools where building materials contain or contained PCB levels exceeding 50 ppm,265 and where recent renovation or construction had disturbed PCB-laden materials, or where the school had another reason to suspect contamination of indoor air.266

2. Develop Safe Demolition, Renovation, and Removal Requirements

If the mandated testing reveals contaminated materials, the Model Act should require contaminated schools to prioritize and remove PCBs from school buildings over a five-year timeline under the EPA's removal protocols established pursuant to the New Model Act. Remediation plans should also include federally mandated safe removal of contaminated light ballasts because these structures can release PCBs into school environments as they age and because PCBs can spread to contaminate an entire building in the event of a fire.267

A New Model Act should also require the EPA to develop mandatory safety

regard to other toxic materials affecting children—asbestos in schools and lead paint in housing and public buildings. See discussion supra Part IV.A-B.

262 See infra notes 267-73 and accompanying text.

265 Under 40 C.F.R. § 761.20 (2010), caulk containing greater than 50 parts per million presents an "unreasonable risk of injury to health."

266 See N.Y. STATE PROTOCOL, supra note 200, at pts. I, III.A (explaining that PCBs exist in the caulk of buildings constructed or renovated between 1950 and 1977).

267 Outdated light ballasts are one source of indoor air PCBs because the ballasts are prone to leakage, deterioration, and an increased risk of fire. See REMOVING PCBS FROM LIGHT FIXTURES, supra note 76, at 2-3. These ballasts are prone to leakage and deterioration because of their age.
protocols for construction work in buildings constructed between the 1940s, when PCBs first began to be commonly used in construction, and 1977, \(^{268}\) when Congress banned the use of PCBs in construction. \(^{269}\) Such Model legislation would require the EPA to develop mandatory safety requirements for renovation, demolition, and waste removal. These EPA-mandated procedures would allow schools to rely on uniform recommended protocols rather than regulations that vary on a state by state basis. \(^{270}\) Federal lawmakers could use New York State's Protocol \(^{271}\) and HUD's Technical Guidelines for Lead-Based Paint \(^{272}\) as starting points in crafting mandatory renovation and remediation rules for the handling of PCBs in schools. At the very least, a Model Act should require material and soil sampling before work begins to determine if PCBs are present. In the event that PCBs are present, the Act should require the hiring of an experienced environmental consultant to prepare a detailed abatement and containment plan tailored to the worksite. \(^{273}\)

3. Congress Must Make Air Testing in Contaminated Schools Mandatory and Establish Minimum Air Quality Standards

In addition to requiring schools to perform testing and requiring the EPA to develop protocols, a Model Act should immediately require that school air contamination levels fall below the recently established EPA "Public Health Levels for PCBs in Indoor School Air" \(^{274}\) and require air testing in schools suspected of contamination. \(^{275}\)

In schools that are determined to be contaminated with airborne PCBs beyond the reference dose level \(^{276}\) recently set by the EPA, further remediation and testing should be required by federal law on an ongoing basis until airborne PCB levels fall below the level determined by the EPA to be a safe for the particular school population. \(^{277}\)

\(^{268}\) Cf. HANDLING PCBs IN CAULK, supra note 256 (the guidelines describe a general protocol for removing caulk containing PCBs but are not mandatory).

\(^{270}\) See, e.g., N.Y. STATE PROTOCOL, supra note 200.

\(^{271}\) See generally N.Y. STATE PROTOCOL, supra note 200.

\(^{272}\) See generally HUD GUIDELINES, supra note 208.

\(^{273}\) N.Y. STATE PROTOCOL, supra note 200, at pt. III.

\(^{274}\) See EPA Public Health Levels for PCBs, supra note 135.

\(^{275}\) See id. (recommending that PCB levels in indoor air be kept as low as possible and that indoor air concentrations for children aged six to twelve years old should be below 300 ng/m\(^3\)). See also discussion supra Part I.B (noting that children are not simply "little adults" and have different susceptibilities to toxins than adults).

\(^{276}\) See EPA Public Health Levels for PCBs, supra note 135.

\(^{277}\) The new Public Health Levels for PCBs in Indoor School Air set by the EPA call for maximum threshold limits depending on the age of the children at the school and the length of time spent in the school building. See EPA Public Health Levels for PCBs, supra note 135. For example, where a school serves children ages six to twelve, the Maximum Public Health Levels for PCBs in Indoor Air should be less than 300 ng/m\(^3\) and as low as is "reasonably achievable." Where a school
4. Current Remediation Steps

In addition to establishing long-term plans to remove PCB-contaminated materials from schools, the Model Act should require steps to decrease contamination in school buildings immediately. These interim steps should include using sealant to cover existing PCB-contaminated caulk. This would prevent the PCBs from continuing to volatilize into the indoor air or leach into surrounding building materials. Under TSCA, the EPA has the enforcement power to require such interim steps while long-range plans for safe removal and cleanup are implemented.

Additionally, under the Comprehensive Environmental Response, Compensation, and Liability Act, ("CERCLA"), the EPA has promulgated rules that make it a federal crime to release more than a pound of PCB-containing material into the environment without reporting the release to the federal government. The United States previously has prosecuted those who released asbestos in excess of the amounts permitted under CERCLA and the concomitant Code of Federal Regulations provisions. School districts and administrators that release more than a pound of PCB-containing material into the environment violate federal law. Just as CERCLA has been applied to those releasing asbestos, it should similarly be used to hold those who illegally release PCBs accountable for civil liability, criminal penalties, or both.

D. Gong after the Alleged Profiteer: Holding Monsanto Company Liable for PCB Remediation in Schools

The aging and deterioration of school buildings has exacerbated the problem of PCBs in schools built in or before the 1970s, both in the United States and worldwide. There surely will be costs associated with the Model Act, along with potential harm to those in school buildings from exposure to PCBs. This section proposes that the Monsanto Company should be held liable for the costs of the necessary removal and remediation efforts in the United States, and for

serves a population of children from three to six years of age for a normal six and one half hour school day, the EPA's Public Health Levels call for a maximum indoor air concentration of PCBs of 100 ng/m3. Id.

Sections 278 279

Id.

285 See supra notes 1-3 and accompanying text. Cf. N.Y. STATE PROTOCOL, supra note 200.
any related liability in tort. Such an allocation would fairly and properly shift the burden of remediation from the taxpayer to the businesses that profited from the continued, decades long manufacture and distribution of PCBs—despite the early evidence that PCBs were toxic to humans.

1. Allocating the Cost of Manufacturing and Selling PCBs

As Yorktown School District alleges in its Complaint, Old Monsanto began to mass-produce PCBs for use in building materials and electrical equipment around 1935. The complaint further alleges that Old Monsanto profited from these sales of PCBs as the only manufacturer of this toxic substance in the United States. If Old Monsanto is indeed the only entity in the United States to have ever manufactured these chemicals and if it benefited economically from selling those chemicals, then Monsanto Company should fund PCB cleanups in schools. Yorktown School District asserts exactly that. It contends that Monsanto Company should be held liable for PCB contamination in its schools and must bear the burden of paying for cleanups and indemnifying the School District for current and future damages.

2. Fairness Dictates that Monsanto Pay for Remediation

The Yorktown School District also alleges that Old Monsanto manufactured PCBs for many years even after knowing that these man-made chemicals presented a threat to human health. Fundamental fairness dictates that Defendants should now bear the burden of remediation associated with PCB cleanups in schools if it is true that Old Monsanto knew of the dangers of PCBs prior to the ban and continued to produce them with this knowledge.

In addition to Yorktown School District, numerous other sources state that Old Monsanto knew of the toxic effects of PCBs prior to their ban. In 1937, a Harvard researcher named Cecil Drinker recognized that PCBs caused possible systemic toxic effects in humans and that test rats suffered severe liver damage in when exposed to PCBs. Drinker presented his results to Old Monsanto on

287 See Francis, supra note 30 (asserting that Monsanto is the source of all PCBs in the United States and that they knew of the potential environmental concerns as early as 1969). At least one court has noted that Monsanto knew as early as 1966 that PCBs were “turning up in the environment” and that traces of PCBs were being found in plants, animals, and humans. Transwestern Pipeline Co. v. Monsanto Company, 53 Cal.Rep.2d 887, 890 (Ct. App. 1996).

288 See Yorktown School District Complaint, supra note 17, at 3.

289 See id. at 3, 6 (referencing Monsanto’s need to maintain a profit center regarding PCBs); Francis, supra note 30.

290 See Yorktown School District Complaint, supra note 17, at 15-23.

291 Id. at 5-7.

292 See e.g., Transwestern Pipeline Co., Cal.Rep.2d at 890. See Francis, supra note 30, at 2.

293 Drinker, supra note 87.
the systemic effects of PCBs that same year.294 The Yorktown Complaint alleges that an Old Monsanto Memorandum dated September 20, 1955, states, "We know aroclors (PCBs) are toxic but the actual limit has not been precisely defined."295 As early as the 1960s, scientists determined that the chemical composition and toxic effects of PCBs are similar to the composition and effects of the highly toxic pesticide DDT,296 now banned in the United States.297 And yet, despite all of this earlier evidence that PCBs were likely injurious to human health, Old Monsanto continued to manufacture PCBs until at least 1971.298

Allocating the cost of PCB cleanup to Monsanto Company would properly and fairly place responsibility where it belongs. Monsanto Company should be responsible if it profited from the manufacture and sale of PCBs despite knowing for years that they were a danger to human health and the environment. That manufacturers produced PCBs for years after their adverse health effects were publicly known299 and that these chemicals continue to contaminate school buildings nationwide300 represent major regulatory and corporate responsibility failures.

3. Schools Can and Do Seek Recovery in Court for Remediation Costs due to Contamination of their Property From Toxic Substances

School districts, municipalities, and other private and public entities have sued to collect damages for remediation costs incurred in the cleanup of toxic substances. Prior cases suggest that school districts can also seek recovery under tort law for costs associated with remediation of PCB contamination in their schools.301

In 1983, for example, multiple school districts filed a class action lawsuit that ultimately involved 30,000 school districts around the country seeking recovery of expenses incurred in removing dangerous asbestos-containing products from their school buildings. Ultimately, the school districts recovered almost $44.4

294 See Francis, supra note 30, at 3.
295 Yorktown School District Complaint, supra note 17, at 5 (citing a Letter from Dr. Emmet Kelly, former Monsanto Medical Director, to Monsanto colleague Dr. Barrett, regarding Aroclor toxicity (Sept. 20, 1955)).
296 Jensen, supra note 38. See Francis, supra note 30, at 8. See also Perlman, supra note 38.
297 Press Release, EPA, DDT Ban Takes Effect, (Dec. 31, 1972), available at http://www.epa.gov/history/topics/ddt/01.htm (announcing the "the general use of the pesticide DDT will no longer be legal in the United States after today").
298 See Transwestern Pipeline Co. v. Monsanto Company, 53 Cal.Rep.2d 887, 890 (Ct. App. 1996) (although Monsanto Company discontinued production of Turbinol, a PCB-laden product, in 1972, it was so concerned about the risk from the product that it offered to sell remaining supplies only to those buyers willing to sign an indemnity agreement to hold Monsanto harmless).
299 See Drinker, supra note 87.
300 See Francis, supra note 30, at 9.
million for costs incurred in the remediation of asbestos in their school districts. In 1995, after opting out of the nationwide class action for school districts, the San Francisco School District sued the manufacturer of asbestos found in its schools. The School District brought negligence and strict liability tort claims against the manufacturer and sought recovery for remediation costs it had incurred due to physical damage to its school buildings and for potential damage to students, staff, and visitors. The court found that the contamination was not merely "economic" damage for which the School District could recover under contract law. Instead, the School district had suffered physical damage to its property and could thus seek recovery under tort law. The court refused the Defendant’s motion to dismiss on the grounds that the statute of limitations for such tort claims had run. The court held that, because the School District could not state a cause of action under tort law until contamination from asbestos had actually occurred, the School District could still bring the tort suit against the asbestos manufacturer.

Finally, in Transwestern Pipeline Co. v. Monsanto Co, a case of first impression involving PCB contamination, the Plaintiff interstate natural gas transporter sought equitable indemnification from Monsanto Company under strict liability and negligence claims after Plaintiff contaminated a third party’s pipelines with gas containing PCBs. Monsanto argued that the PCB damage to the pipelines were economic damages not available under tort law. Specifically referring to the San Francisco School District case, the Court rejected Monsanto’s argument and analogized the PCB damage to the pipelines to the asbestos damage to school buildings. Similarly, in the case of PCBs in school buildings, schools should be able to recover under theories of negligence and strict liability for physical damage to their property due to PCB contamination.

Other municipalities have also succeeded on tort claims and recovered the costs of abating toxic substances in public buildings. New York City was

302 Id. at 306-07.
303 Id.
304 Id. at 311, 315.
305 Id.
306 Id. at 313.
308 Id. at 889.
309 Id. at 900-02.
310 Id. at 901-04 (stating, "[i]n this respect at least, we see no distinction between PCB contamination and asbestos contamination").
312 See infra note 317 and accompanying discussion.
one of the first such municipalities to sue asbestos manufacturers to recover the costs of abating asbestos in schools and other public buildings.313 When the litigation moved to bankruptcy court, New York City's lawyers negotiated to create the first asbestos trust to be used for remediation of public buildings.314 New York City's lawyers thus far have collected over $130 million from asbestos defendants. New York City is the single largest collector of bankruptcy funds for remediation of asbestos in public buildings.315

Many other defendants in asbestos litigation have also argued that Plaintiffs should not be able to recover funds under tort law for asbestos damage to their buildings.316 However, many courts have rejected this argument.317 Instead, the courts have carved out an exception that allows recovery in tort for the cost of removal or encapsulation of asbestos.318 Courts have done this in line with the Court's reasoning in \textit{San Francisco School District}. Courts have held that because the evidence suggests that asbestos may be extremely dangerous to humans when handled improperly, contamination from asbestos is physical damage to property that endangers human health.319 Further, courts have held that the costs of remediation due to such asbestos contamination are recoverable under tort law.320 Considering the precedent established by the asbestos cases,321 as well as the \textit{Transwestern} case involving PCB contamination,322 it is likely that plaintiffs seeking to recover damages for PCB contamination would succeed under tort law.323 Thus, it is entirely appropriate for municipalities, school districts, and other entities affected by PCB contamination to seek indemnification from Monsanto Company, whom the Yorktown School District alleges was the sole producer, marketer, and distributor of PCBs in the United

314 Id.
315 Id.
320 See Gorel, supra note 316, at 539.
321 See discussion supra Part IV.D.3.
323 See discussion supra Part IV.D.3.
E. Compliance under the Stockholm Convention

Under the Stockholm Convention, adopted in 2001 and registered in 2004, the United States and parties to the Convention agreed to work toward achieving environmentally sound management of PCBs by 2028. The parties to the Convention agreed to review the progress towards elimination of PCBs by preparing reports on these efforts every five years. A five-year report from the United States should promptly be furnished to the Convention. The report should state whether efforts to eliminate the chemicals have been made, and explain immediate and future efforts toward these ends.

CONCLUSION

Although we did not initially choose the “other road” so clearly described by Carson in Silent Spring—the road that would allow us to avoid polluting our world with synthetically produced chemicals on a massive scale—we now have the opportunity to begin to correct some of our past mistakes with regard to PCBs. We have enough information to follow the “other road” and to act judiciously and cautiously with regard to PCBs in school buildings. We now know that these chemicals are injurious to human health, particularly the health of children, and that they are present in our nation’s classrooms on a large scale. Yet, we have not legislatively required testing for their presence in building materials or indoor school air. Indeed, the EPA has not even required that school air be as safe as the recently released “Public Health Levels for PCBs in Indoor School Air.” Moreover, there are no mandatory protocols for the safe removal, treatment, or disposal of PCBs. Nor are there mandatory protocols to ensure safe construction standards are used when construction or demolition takes place in PCB-laden school buildings.

We must take stock of the national situation and take the following steps: (1) undertake initial physical material testing to assess the levels of PCBs in classrooms; (2) mandate that schools comply with the EPA’s “Public Health Levels” for air; (3) require testing of indoor air where contamination is suspected; (4) establish a timeline for the safe removal of PCBs from schools; (5) establish mandatory protocols for construction and demolition involving PCB-containing material; and (6) comply with international agreements and efforts on PCB handling and reporting.

And if testing and removal of PCBs in our nation’s schools is costly, there are legal, economic, and policy reasons for society to hold the entities that...
manufactured, marketed, and distributed PCBs responsible for bearing the costs. Holding corporate entities liable for required remediation is consistent with past legal precedent and would prevent imposing the costs of remediating PCB contamination on taxpayers. Taking these steps to protect the public against further PCB contamination in schools will bring us one step closer to the "other road." It will help ensure that the next generation of school children does not suffer adverse consequences from exposure to PCBs in schools.